Constitutive model for the fluid-particle drag coefficient in filtered two-fluid models for gas-particle flows

Chris Milioli, Fernando Milioli, William Holloway, Kapil Agrawal & Sankaran Sundaresan
Princeton University

Paper 54b, 03B01 Special session to celebrate Tom O’Brien’s career long accomplishments
Monday, October 29, 2012
Conference C (Omni)
Filtered two-fluid model: Overview

MICRO-SCALE ~ 50μm-mm

MESO-SCALE ~ mm-cm

MACRO-SCALE ~ cm-m

DEM for particles, DNS or CFD of averaged equations for the fluid flow.

Volume-averaged hydrodynamic models for fluid and particle phases.

Filtered volume-averaged hydrodynamic models for fluid and particle phases.

Engineering need: tools to probe macro-scale flow features directly.

Courtesy: Franklin Shaffer, NETL, Morgantown, WV (2009)

High Speed Particle Imaging: Riser Flow
Filtered two-fluid model: Overview

Develop models that allow us to focus on large-scale flow structures, without ignoring the possible consequence of the smaller scale structures.

Original two-fluid model and constitutive relations

* Significant advances in the past three decades

Modified constitutive relations for hydrodynamic terms
species and energy dispersion*
interphase heat and mass transfer rates*
even modified reaction rate expressions!

Filtered two-fluid model: Overview

MICRO-SCALE ~ 50μm-mm

MESO-SCALE ~ mm-cm

MACRO-SCALE ~ cm-m

Approach: Probe details of meso-scale structures and develop effective coarse-grained equations
Filtered two-fluid model: Overview

Filter “data” generated through highly resolved simulations of two-fluid models

- Snapshot of particle volume fraction field – kinetic theory based two-fluid model.
- Squares of different sizes illustrate regions (i.e. filters) of different sizes.

\[
\tilde{V}_g = \frac{\phi_g V_g}{\phi_g} ; \quad \tilde{V}_s = \frac{\phi_s V_s}{\phi_s}
\]

\(\Delta_{\text{grid}} \ll \Delta_{\text{fil}} \ll \Delta_{\text{domain}}\)

Igci et al., (2008)
Filtered drag coefficient

Filter “data” generated through highly resolved simulations of two-fluid models

- Snapshot of particle volume fraction field – kinetic theory based two-fluid model.
- Squares of different sizes illustrate regions (i.e. filters) of different sizes.

\[
\beta_{fil} = \frac{\beta_{micro} \left(\phi_s, |v_g - v_s| \right) (v_{gy} - v_{sy}) - \phi'_s \frac{\partial p'_g}{\partial y}}{\left(\tilde{v}_{gy} - \tilde{v}_{sy} \right)}
\]

\[\Delta_{grid} << \Delta_{fil} << \Delta_{domain}\]

Igci et al., (2008)
Filtered drag coefficient

Filter “data” generated through highly resolved simulations of two-fluid models

- Snapshot of particle volume fraction field – kinetic theory based two-fluid model.
- Squares of different sizes illustrate regions (i.e. filters) of different sizes.

\[
\beta_{fil} = \text{filtered drag coefficient} \\
= \beta_{micro} \left(\bar{\phi}_s |\vec{v}_g - \vec{v}_s| \right)(1 - H)
\]

\[
H = \frac{g \Delta_{fil}}{V_t^2}, \quad \text{parameters characterizing sub-filter scale structure}
\]

\[\Delta_{grid} \ll \Delta_{fil} \ll \Delta_{domain}\]

Igci et al., (2008)
Filtered two-fluid model: Overview

Filter “data” generated through highly resolved simulations of two-fluid models

- Snapshot of particle volume fraction field – kinetic theory based two-fluid model.
- Squares of different sizes illustrate regions (i.e. filters) of different sizes.

\[\beta_{fil} = \text{filtered drag coefficient} \]
\[= \beta_{micro} \left(\bar{\phi}_s, \left| \vec{v}_g - \vec{v}_s \right| \right) (1 - H) \]
\[H = f \left(\frac{g \Delta_{fil}}{v_t^2}, \bar{\phi}_s \right) \]

\[\Delta_{grid} \ll \Delta_{fil} \ll \Delta_{domain} \]

Filtered drag coefficient

\[\beta_{\text{fil}} = \beta_{\text{micro}} \left(\bar{\phi}_s, \left| \bar{v}_g - \bar{v}_s \right| \right) \left(1 - H \right); \]

\[H = f \left(\frac{g \Delta_{\text{fil}}}{V_t^2}, \bar{\phi}_s \right) \]

\(\left\{ \begin{array}{l}
75\mu m \text{ FCC particles} \\
\text{ambient air}
\end{array} \right. \)

\[\frac{g \Delta_{\text{fil}}}{V_t^2} = 2.056 \Rightarrow \Delta_{\text{fil}} = 1cm \]
Filtered drag coefficient: The present study

\[\beta_{fil} = \beta_{\text{micro}} \left(\phi_s, \left| \mathbf{\tilde{v}}_g - \mathbf{\tilde{v}}_s \right| \right) (1 - H); \]

\[H = f \left(\frac{g \Delta_{fil}}{V_t^2}, \phi_s, \ldots \right) \]

\[\left\{ \begin{array}{l}
75\mu m \text{ FCC particles} \\
\text{ambient air}
\end{array} \right\}
\]

\[\frac{g \Delta_{fil}}{V_t^2} = 2.056 \Rightarrow \Delta_{fil} = 1cm \]

Filtered drag coefficient: The present study

\[
\beta_{\text{fil}} = \beta_{\text{micro}} \left(\bar{\phi}_s, \left| \bar{\nu}_g - \bar{\nu}_s \right| \right) (1 - H); \quad H = f \left(\frac{g \Delta_{\text{fil}}}{V_t^2}, \bar{\phi}_s, \frac{\bar{\nu}_g - \bar{\nu}_s}{V_t} \right)
\]
Filtered drag coefficient: The present study

\[\frac{\langle \tilde{v}_{\text{slip}} \rangle}{v_t} = 0.60 \]

- As filter size increases, the filtered drag coefficient decreases.
- Does suggest the existence of large filter size asymptote.

\[H = f \left(\frac{g \Delta_{fil}}{v_t^2}, \phi_s, \frac{\tilde{v}_g - \tilde{v}_s}{v_t} \right) \]

\[\begin{array}{c}
\{ 75 \mu m \text{ FCC particles} \\
\{ \text{ambient air} \}
\end{array} \]

\[\frac{g \Delta_{fil}}{v_t^2} = 2.056 \Rightarrow \Delta_{fil} = 1 cm \]
Filtered drag coefficient: The present study

As slip velocity increases, the filtered drag coefficient decreases.

\[H = f \left(\frac{g \Delta_{fil}}{v_t^2}, \phi_s, \frac{\tilde{v}_g - \tilde{v}_s}{v_t} \right) \]

\[\left\{ \begin{array}{l} 75 \mu m \text{ FCC particles} \\ \text{ambient air} \end{array} \right\} \]

\[\frac{g \Delta_{fil}}{v_t^2} = 2.056 \Rightarrow \Delta_{fil} = 1 cm \]
Filtered drag coefficient: The present study

- As slip velocity increases, the filtered drag coefficient decreases.
- Same trend at different filter sizes.

\[H = f \left(\frac{g \Delta_{\text{fil}}}{V_t^2}, \phi_s, \frac{\tilde{V}_g - \tilde{V}_s}{V_t} \right) \]

\[\begin{cases} 75 \mu m \text{ FCC particles} \\ \text{ambient air} \end{cases} \]

\[\frac{g \Delta_{\text{fil}}}{V_t^2} = 2.056 \Rightarrow \Delta_{\text{fil}} = 1 cm \]
Filtered drag coefficient: The present study

- As slip velocity increases, the filtered drag coefficient decreases.
- NOT THE USUAL INERTIAL CORRECTION!

\[H = f \left(\frac{g \Delta_{fil}}{V_t^2}, \phi_s, \frac{\tilde{V}_g - \tilde{V}_s}{V_t} \right) \]

\[\begin{cases}
75 \mu m \text{ FCC particles} \\
\text{ambient air}
\end{cases} \]

\[\frac{g \Delta_{fil}}{V_t^2} = 2.056 \Rightarrow \Delta_{fil} = 1cm \]
Filtered drag coefficient: The present study

As the slip velocity increases, the sub-filter scale distribution of particles becomes more segregated

$$H = f \left(\frac{g \Delta_{fil}}{V_t^2}, \phi_s, \frac{\tilde{V}_g - \tilde{V}_s}{V_t} \right) \begin{cases} 75\mu m \text{ FCC particles} \vspace{0.2cm} \cr \text{ambient air} \end{cases} \begin{vmatrix} \frac{g \Delta_{fil}}{V_t^2} \cr = 2.056 \Rightarrow \Delta_{fil} = 1cm \end{vmatrix}$$
Filtered drag coefficient: The present study

At low slip velocities:

\[H_1 = \begin{cases}
0, & \bar{\phi}_s < \bar{\phi}_s^c \\
A (\bar{\phi}_s - \bar{\phi}_s^c), & \bar{\phi}_s > \bar{\phi}_s^c
\end{cases} \]

At high slip velocities:

\[H_1 = B + A \bar{\phi}_s \]

\[H = \min(h_{env}, H_1) \]
Filtered drag coefficient: The present study

\[H = f \left(\frac{g \Delta \text{fil}}{v_t^2}, \phi_s, \frac{\tilde{V}_g - \tilde{V}_s}{v_t} \right) \]
Filtered particle phase viscosity

$$\frac{\mu_s g}{\rho_s V_t^3}$$

Dimensionless effective solid viscosity

- 4.112
- 8.224
- 16.448
- 24.672

Filtered solid volume fraction

$$\frac{\mu_s g}{\rho_s V_t^3} = f \left(\frac{g \Delta_{fil}}{V_t^2}, \phi_s \right)$$

- $75 \mu m$ FCC particles
- ambient air

$$\frac{g \Delta_{fil}}{V_t^2} = 4.112 \Rightarrow \Delta_{fil} = 2cm$$

Filtered particle phase viscosity: Present study

\[\overline{S}_i = \sqrt{2 \ddot{S}_i : \ddot{S}_i}, \quad \ddot{S}_i = \frac{1}{2} (\nabla \tilde{\nu}_i + \nabla \tilde{\nu}_i^T) - \frac{1}{3} (\nabla \cdot \tilde{\nu}) I, \quad i = s, g \]

\[\mu_{fil, i} = \rho_i \Delta_{fil}^2 \ddot{S}_i C_{visc, i}, \quad i = s, g \]

\[C_{visc, s} = 0.105 \overline{\phi}_s \]

\[C_{visc, g} = 0.17 - 0.275 \overline{\phi}_s \]
Summary

- A more refined model for the filtered fluid-particle drag force is presented.

- Smagorinsky-like model for the filtered particle and fluid phase viscosities capture the computationally generated data nicely.

- Smagorinsky-like model for the meso-scale particle and fluid phase pressures (akin to turbulent kinetic energy) works nicely as well (not presented).
Acknowledgments

Funding from:

- FAPESP - São Paulo State Research Foundation (Brazil)
- Department of Energy CCSI
- ExxonMobil Research & Engineering Co.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Filtered meso-scale pressure: Present study

\[
\overline{S_i} = \sqrt{2 \overline{S_i} : \overline{S_i}}, \quad \overline{S_i} = \frac{1}{2} (\nabla \tilde{\nu}_i + \nabla \tilde{\nu}_i^T) - \frac{1}{3} (\nabla \cdot \tilde{\nu}) I, \quad i = s, g
\]

\[
P_{fil, i} = \rho_i \Delta^2_{fil} \overline{S_i}^2 \left(\frac{g \Delta_{fil}}{V_t^2} \right)^{2/7} C_{press, i}, \quad i = s, g
\]

\[
C_{press, g} = 0.275 - 0.44 \overline{\phi}_s
\]
Filtered meso-scale pressure: Present study

\[\bar{S}_i = \sqrt{2 \bar{S}_i : \bar{S}_i}, \quad \bar{S}_i = \frac{1}{2} (\nabla \tilde{\nu}_i + \nabla \tilde{\nu}^T_i) - \frac{1}{3} (\nabla \cdot \tilde{\nu}) I, \quad i = s, g \]

\[P_{fil, i} = \rho_i \Delta^2_{fil} \bar{S}_i^2 \left(\frac{g \Delta_{fil}}{v_t^2} \right)^{2/7} C_{press, i}, \quad i = s, g \]

\[C_{press, s} = 0.17 \bar{\phi}_s \]